
International Journal of Heat and Mass Transfer 48 (2005) 3402–3410

www.elsevier.com/locate/ijhmt
Sensitivity study for the mass transfer at a single droplet

A.R. Paschedag *, W.H. Piarah, M. Kraume

Institute of Chemical Engineering, Technische Universität Berlin, 10623 Berlin, Germany

Received 7 October 2003; received in revised form 26 November 2004

Available online 19 April 2005
Abstract

The mass transfer between a single droplet and a surrounding fluid can be described mathematically solving the

momentum and mass balances in both phases (conjugate problem). This study of dimensionless parameters shows

how the process is influenced by changes in material properties and operating conditions.

The influence of the Reynolds number Re on the mass transfer is found to be small and to vanish for creeping flows.

A sensitivity to the viscosity ratio l* exists only in a limited range. The influence of the Peclet number Pe can be approx-

imated for small Pe by considering only the external problem and for high Pe by considering only the internal problem.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Unsteady mass transfer between fluid particles and a

surrounding continuous fluid is fundamental for many

technical applications, like bubble columns, airlift reac-

tors, liquid/liquid extraction, etc. This transport process

is influenced by the physical properties of the species, by

the operating conditions and by the particle properties.

To model this system mathematically the momentum

and mass balance equations have to be solved in both

phases considering adequate boundary conditions and

interfacial conditions including all relevant forces and

the thermodynamic equilibrium. At present, this can

not be done in the full complexity because of two rea-

sons: Firstly, the physics of some phenomena is not

yet understood qualitatively and quantitatively, which

leads to difficulties in setting up a mathematical descrip-
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tion [16]. This includes changes in surface tension and

surface mobility caused by the mass transfer process or

irregular time dependent particle shapes.

The second point is the huge numerical effort required

for a sufficiently accurate solution of the balance equa-

tions even for a single particle. For a swarm of particles

the computing time will be in the order of weeks, months,

or longer. To deal with this situation the mathematical

description used in this work is based on a couple of sim-

plifications: Only a single spherical droplet is considered

and all effects caused either by changes of surface tension

(like Marangoni convection) or by changes in the physi-

cal properties of the phases are neglected. Here, both

phases are liquid, but the same algorithm can be applied

also for liquid/gas and gas/liquid systems using suitable

parameter sets. Based on the knowledge gained from this

investigation the influence of parameter variations can be

judged and suitable models for more complex systems

can be developed in a subsequent step.

In our setup we investigate the mass transfer of an

additive from a droplet into an ambient continuous
ed.
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Nomenclature

Ai area of interface, m2

c concentration, mol/m3

D diffusion coefficient, m2/s

D* ratio of diffusion coefficients, –

d diameter of the droplet, m

Fo Fourier number, –

Fr Froude number, –

~g gravitational acceleration, m/s2

k mass transfer coefficient, m/s

m distribution coefficient, –

_n molar flux, mol/s

p pressure, Pa

p0 reduced pressure, –

Pe Peclet number, –

R radius of the droplet, m

Re Reynolds number, –

r radial coordinate, m

r 0 reduced radial coordinate, –

Re Reynolds number, –

Sc Schmidt number, –

Sh Sherwood number, –

t time, s

t 0 reduced time, –

~v velocity, m/s

~v0 reduced velocity, –

~vr relative velocity between the phases, m/s

Greek symbols

l dynamic viscosity, kg/ms

l* ratio of dynamic viscosities, –

m kinematic viscosity, m2/s

q density, kg/m3

q* ratio of densities, –

n averaged reduced concentration in the parti-

cle, –

n0 reduced concentration, –

Subscripts

1 far away from the droplet or after long

time

0 initial

1 dispersed phase

2 continuous phase

i interface
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liquid phase. Mass transfer in the opposite direction

can be described similarly. The initial additive concen-

tration in the continuous phase is zero which is an easy

but not restricting assumption since mass transfer and

the Sherwood number used for its description depend

only on concentration differences and not on absolute

concentrations.

Mass transfer around a single droplet has been stud-

ied experimentally and numerically by a number of re-

search groups during the last decades. The activities in

this field served on the one hand to the validation of

numerical methods by comparing the results to analyti-

cal solutions of limiting cases (e.g. [3]), and on the other

hand they were used to validate models with respect to

experimental data (e.g. [17]). In the first case good agree-

ment was found up to Peclet numbers of 104 [12]. In the

second case most simulations resulted in slower mass

transfers than found in the corresponding experiments.

Computations with advanced models describing the

interfacial processes have not yet been presented. Simple

models like those that involve an artificial increase of the

diffusion coefficient D [5,6] are not investigated in this

paper since the dependence of the modified diffusion

coefficient D on material or flow properties is not known

and thus the prediction reliability of such models is not

higher compared to the basic model. However, since this

paper gives mainly a parameter study in terms of dimen-

sionless numbers the solution for such adapted models

can be obtained by replacing the molecular diffusion
coefficient by a modified one that is expressed in these

dimensionless numbers.

There are a couple of parameters describing fluid

properties of the two phases that influence the mass

transfer between them. The influence of the ratio of

these parameters can be studied. The goal of the present

paper is not a general description of the influence of

parameters on the system behavior but determination

of the range in which a parameter has an influence

and the one in which it can be varied without affecting

the resulting asymptotic Sherwood number Sh1. Sh1
is a dimensionless measure for the mass transfer rate.

The investigations will concentrate on the Reynolds

number Re, the Peclet number Pe, and the viscosity ratio

l*. From these, regions of stability against changes in

the operating condition and of sensitivity to operating

conditions can be derived. Correspondingly, ranges of

parameters can be found in which changes of operating

conditions do not influence Sh1 and ranges in which

they do.
2. Model description

2.1. Velocity field

Under the assumptions discussed in Section 1 the

velocity field ~v inside and outside the droplet can be

considered to be stationary and independent of the
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concentration field. It can be computed solving the con-

tinuity equation and the Navier–Stokes equation

0 ¼ r �~v ð1Þ

o~v
ot

¼ 0 ¼ �ð~v � rÞ~vþ mðD~vÞ � 1

q
rp þ~g ð2Þ

for each phase. (All equations are given here in their

dimensional form. The complete set of dimensionless

equations is shown in Appendix A.) The outer boundary

conditions have to be chosen in a way that an infinite

fluid of uniform state is approximated with only mini-

mal disturbance by the droplet. Therefore, the diameter

of the simulated domain is by a factor of 100 larger than

the droplet. The main flow velocity is determined at all

outer boundaries apart from the outlet face. Since the

droplet itself is considered to be stationary, this main

flow velocity is equal to the relative velocity between

droplet and continuous phase caused by differences in

the density.

The interfacial conditions include equal velocities

and shear stresses for both phases. Their mathematical

formulations can be found in [14].

Two dimensionless numbers characterize the velocity

field, Re and l*. The Reynolds number is determined

by the relative velocity between the two phases~v caused
by density differences. It is calculated from the phy-

sical properties of the continuous phase (index 2):

Re ¼ 2R j~vr j q2=l2 (see notation list for details).

Re < 0.1 characterises a creeping flow. For higher Re

wakes are formed behind the droplet, but the flow re-

mains laminar for technical relevant cases (Re < 500).

l* = l1/l2 is the viscosity ratio of dispersed (index 1)

and continuous phase. As a rough orientation one can

consider l* < 10�2 representing bubbles in liquids,

0.1 < l* < 10 representing liquid/liquid systems and

l* > 102 representing drops in gases.

2.2. Concentration field

Based on the numerically determined velocity field

the concentration field for the transferred component

can be computed. The transient concentration distribu-

tion is determined by the mass balance equation:

oc
ot

¼ �~v � rcþr � ðDrcÞ ð3Þ

which has to be solved for each phase. The outer bound-

aries of the continuous phase apart from the outlet are

characterized by a constant concentration, in our case

zero. The coupling at the interface can be described

using the distribution coefficient m and the equality of

molar fluxes _n to and from the interface:

r ¼ R; 0 6 h 6 p : m ¼ c1i
c2i

ð4Þ
r ¼ R; 0 6 h 6 p : _n1i ¼ _n2i ð5Þ

with c1i and c2i being the interfacial concentrations.

The most important parameter for the mass transfer

is the Peclet number Pe ¼ 2R j~vr j =D. For the internal

and the conjugate problem the diffusion coefficient of

the dispersed phase D1 is used while for the external

problem the one for the continuous phase D2 is used.

Since for the conjugate problem in all cases discussed

here the ratio of diffusion coefficients D* is 1 the defini-

tion of Pe is the same for all cases considered and a com-

parison of the cases can be done. A similar problem

occurs for the dimensionless presentation of time. Here

the Fourier number Fo = tD/R2 is applied with the anal-

ogous use of diffusion coefficients.

The thermodynamic equilibrium at the interface is

described by the distribution coefficient m = c1i/c2i. Since

the driving force for the mass transfer is directly propor-

tional to m the effects of changes in m can be predicted

and m shall not be considered in more detail here but

taken to be 1 in all cases.

An obvious way to monitor the process over time in a

dimensionless framework is to consider the dimensionless

mean concentration in the droplet which is defined as

nðtÞ ¼ ðc1ðtÞ � mc21Þ
ðc10 � mc21Þ ð6Þ

whereby c1 is the mean concentration in the droplet, c10
is the initial concentration in the droplet and c21 is the

concentration in the continuous phase far away from the

droplet. n gives an impression which fraction of the orig-

inally available mass has been transferred between the

phases at a certain time. More common in engineering

is the description of the mass transfer efficiency using

the time averaged mass transfer coefficient k and the

appropriate dimensionless Sherwood number Sh derived

from it:

k ¼
_n ln

c10 � mc21
c1ðtÞ � mc21

Aiðc10 � c1ðtÞÞ
ð7Þ

Sh ¼ 2kR
D

ð8Þ

with Ai being the area of the interface and _n the molar

flux across it. In the present paper the results will be dis-

cussed based on the Sherwood number. An advantage of

this representation is that the Sherwood number reaches

a steady limit for large Fo, since the reduction in mass

flow and driving concentration difference develop pro-

portionally. This asymptotic value Sh1 is numerically

very sensitive since it gives the ratio of small values.

But the technical relevance of that asymptotic value de-

pends on the concentration level at which it is reached. If

at that time most of the mass transfer has taken place

Sh1 is not characteristic for the process as a whole.
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Fig. 1. Transient concentrations normalized by initial concentration in the particle for the different basic cases (Re = 100, l* = 1,

Pe = 104). (a) Internal problem, (b) external problem and (c) conjugate problem.
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Even to solve Eqs. (3)–(5) coupled for both phases

(conjugate problem) long computing times are required

(in the range of some days on a single processor) and

therefore many authors [2,8] reduce the problem size fur-

ther by completely separating the mass transfer within

the droplet (internal problem) from the mass transfer

in the continuous phase (external problem). This is done

assuming that the relevant mass transfer resistance in the

complementary phase is negligible. The overall mass

transfer coefficient of the entire problem is derived as a

combination of the two separate mass transfer coeffi-

cients for each phase. The basic evolution of the reduced

concentration field with time can be seen in Fig. 1 for the

mass transfer of a component from a droplet to the

ambient flow. The initial concentration outside the drop-

let is zero and the Reynolds number is 100.

An infinitely fast mass transfer in the continuous

phase (internal problem) results in a constant concentra-

tion (in time and space) at the interface which is in ther-

modynamic equilibrium with the concentration far away

from the droplet. The concentration is then given by the

boundary conditions for the continuous phase. This is

shown in Fig. 1(a).

An infinitely fast mass transfer inside the droplet re-

sults in a spatially uniform concentration inside the

droplet that changes with time. Consequently, also the

interfacial concentration which acts as boundary condi-

tion for the external problem is constant along the inter-

face but varies with time (see Fig. 1(b)). The limits in

validity of this assumption are discussed in [12].

Fig. 1(c) shows that for the conjugate problem the

concentration profiles in both phases as well as at the

interface are transient.
3. Numerical setup

As mentioned above the domain for the simulations

has the 100-fold size of the droplet. The system can be
assumed to be axially symmetric. Using this property

the model area was reduced to a two dimensional slice.

The domain is bounded by an inlet and an outlet perpen-

dicular to the axis, a moving wall parallel to the axis and

two symmetry planes. The fixed velocity and concentra-

tion at the inlet and the wall represent the state of the

continuous phase undisturbed by the droplet. The inter-

facial conditions mentioned in Section 2 are introduced

as moving wall boundary conditions for both phases by

user coding.

The computations have been carried out using the

commercial CFD code Star-CD. The code is based on

finite volume discretization. While there are no special

numerical requirements for the computation of the sta-

tionary velocity field the solution of the concentration

field is sensitive to the grid properties, the discretization

scheme, and the time step width. This gets especially

important for high Peclet numbers where the influence

of convective processes is strong compared to diffusive

ones.

The grid consists of about 30000 cells, nearly 5000 of

them are inside the droplet. For the discretization of

convective terms a limited third order scheme (MARS)

has been used and time is discretized using the Crank–

Nicolson-method. The time step is adapted manually

in relation to the progress of mass transfer in a way that

DFo = 10�6–10�5.
4. Results

4.1. Influence of fluid dynamics

Firstly, we consider the internal problem. There are

two limiting cases for the viscosity ratio l*. If the viscos-
ity of the droplet is much higher than that of the contin-

uous phase the droplet behaves like a solid particle. No

significant internal circulation occurs and the mass

transfer inside the droplet is only diffusive. This case
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occurs for liquid droplets in a gas. Fig. 2 shows that even

for l* = 100 these conditions are not completely fulfilled

for the internal problem. This means that although the

fluid dynamic behavior is comparable to that of a rigid

sphere the influence of the internal circulation remains

relevant for the mass transfer, especially at high Pe.

From the plot of mean concentration versus Fo in

Fig. 2 it is obvious that the deviation from the behavior

of the rigid sphere starts at significantly high concentra-

tions of about n = 0.8.

The second limiting case is l* < 1. This means that

the mobility inside the droplet is larger than the one of

the surrounding fluid. Consequently, the interface fol-

lows the continuous phase and the circulation in the

droplet becomes independent of a further decrease in

l1. Fig. 2 shows that in the range 1 6 l* 6 0.01 the lim-

iting case is reached. The comparison between Figs. 2

and 3 shows that the effect discussed for the mean con-
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centration is also valid for the mean Sherwood number.

Fast reduction of the concentration corresponds to large

Sherwood numbers and while the concentration curves

asymptotically approach zero the Sherwood number

reaches a constant value.

In the case of the external problem a limit for high l*
does not exist. The curves converge to the one for the

solid particle, but a l* above which this limit is reached

cannot be given. In the range 1 6 l* 6 0.01 a slight

effect remains but it is no more significant (Fig. 4), so

the limit can be considered similar to the internal

problem.

For the conjugate problem (Fig. 5) the limit for low

l* is also in this range. In principle the mass transfer

is always slower for the conjugate problem than for

the separate internal and external problems with the
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same parameter set since there are mass transfer resis-

tances in both phases instead of only one. Consequently,

there exists no limit for high l* in the same sense as it

does not exist for the external problem.

The influence of the Reynolds number in the range

discussed is relatively small. This is shown for a repre-

sentative parameter set for the conjugate problem in

Fig. 6. For the external problem the effect is in the same

range and for the internal problem it is even smaller.

Furthermore, in the range of creeping flow (Re < 0.1)

the effect of changes in Re vanishes completely [13]. This

result has to be expected since in that range the molecu-

lar momentum transport is significant compared to con-

vective momentum transport. Consequently, further

decrease of convection has no effect on the mass

transfer.

Even for larger Reynolds numbers with convective

momentum transfer dominant to the molecular one the

structure of the flow field remains mainly unchanged

compared to smaller Re besides the formation of wakes
Pe =
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(pure d n
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Fig. 7. Concentration profile for a long time (concentration normalize

internal problem, Re = 100, l* = 1, flow upward.
behind the droplet. The stream lines outside the droplet

are basically parallel to the interface in the region rele-

vant for the mass transfer. This means that mass transfer

from the interface is mainly diffusive and depends on the

concentration gradient normal to the interface. This gra-

dient changes at high Reynolds numbers slightly with

increasing convective transport compared with molecu-

lar one but not by orders of magnitude. Inside the droplet

the streamlines are elliptically closed. Due to the high

velocity the concentration gradient along the streamlines

is marginal compared to the one perpendicular to them

and a further change in the velocity does not change

the circumstances noticeably. As a result the only mech-

anism which accelerates the mass transfer at large Re is

the change in the concentration gradient in the continu-

ous phase and consequently, the influence on the external

problem is stronger than on the internal problem. The

small influence of changes in Re is parallel to the finding

that small inaccuracies in the computation of the velocity

field do not have a significant influence on the prediction

of the mass transfer, as described e.g. in [14].

4.2. Influence of mass transfer

Mass transfer can be characterized by the Peclet

number giving the ratio of convective and diffusive mass

transfer. The influence of Pe shall be discussed first for

the internal problem. In this case Pe describes the ratio

between convection and diffusion inside the droplet,

while the outer diffusion is infinitely fast. Fig. 7 shows

how the reduced concentration profiles which are sta-

tionary at the end of the process change with Pe. It

can be seen that there are the two limiting cases of diffu-

sion determined system and convection determined sys-

tem. For Pe < 10 the transport is similar to that in a

particle without internal circulation because diffusion

is dominant. Further increase in the diffusivity speeds

up the mass transfer proportionally which leads to iden-

tical behavior of Sh over Fo (Fig. 8). The limit for the

asymptotic Sherwood number Sh1 = 6.58 at Pe = 0
1.8

0.2

= 102 PeeP = 40103 Pe = 1

d by actual mean concentration in the particle) for different Pe,
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has been determined theoretically by Newman [10] for

pure diffusion.

A second limit exists for high Peclet numbers. If the

convective mass transfer dominates the diffusive one,

the concentration along each streamline is nearly con-

stant. Since the streamlines are in a wide range parallel

to the interface the mass transfer to the interface is only

due to diffusion. A further increase in speed of the con-

vective transport does not influence the mass transfer

significantly. Nevertheless, the Peclet number at which

this situation is reached varies with the Reynolds num-

ber. A more general statement can be made using the

Schmidt number (Sc = Pe/Re = m/D) which is a material

constant instead of the Reynolds number. Fig. 9 shows,

for different Peclet numbers and two different Schmidt

numbers, the Fourier number at which 99% of the mass

transfer has taken place. For both Sc the influence of Pe
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Fig. 9. Influence of Pe on the time for 99% mass transfer,

internal problem.
vanishes from about Pe = 104. This is discussed in more

detail in [11].

An analytical solution of Sc1 = 17.7 is given for high

Pe in the case of creeping flow by Kronig and Brink [8].

At higher Reynolds numbers the values of Sc1 are

slightly higher as discussed above. This limiting case is

even more relevant than the one at low Pe since for most

practical applications Pe is in the range of 104–106.

For the external problem the situation is different.

Since the streamlines are not closed, the mass transfer

rate increases with the velocity as well as with the diffu-

sivity. Consequently, the asymptotic Sherwood number

increases proportionally to Pe (see Fig. 10). A limit

exists only in the case of a droplet resting in the sur-

rounding fluid, which means that there is no relative

velocity. For this pure diffusive case the theoretical

asymptotic value of Sh is 2 [15]. For the range of Pe con-

sidered (10 6 Pe 6 105) this results in a much wider

range of asymptotic Sherwood numbers (more than

two orders of magnitude) compared to the internal

problem (less than one order of magnitude).

For the conjugate problem the effects inside and out-

side the droplet are relevant. In this case the values for

Sh are always lower than for the internal as well as for

the external problem as discussed for the viscosity ratio.

Some resulting curves are shown in Fig. 11. As for the

internal problem, there is a limit in Sh1 for high Pe

and as for the external problem there is one for small

Pe. But, for small Pe the computing time needed to

determine Sh1 is very long and therefore simulations

to determine this limit have not been carried out. In gen-

eral, it is found that for small Pe the external problem is

rate determining and for large Pe the internal problem

(see also [7]).
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5. Conclusions

The mass transfer between a single droplet and an

ambient liquid flow can be described systematically

using dimensionless numbers. The parameters needed

for a full characterization of a non-reacting system are

Re, l*, m, D* and Pe. Depending on the case (internal,

external, conjugate problem) limits can be found,

beyond which further changes of certain parameters do

not influence the transport rate any more. In the range

of sensitivity to the parameters the Sherwood number

increases with Re and Pe and decreases with l*.
A variation of l* has a significant effect in the range

between 0.1 and 100. Below that limit the interface

moves with the same velocity as the surrounding fluid

without slowing down it while above the droplet behaves

similar to a rigid sphere.

A limit for the Reynolds number influence gives

Re = 1, below which the viscous momentum transfer

becomes dominant. For higher Re the influence of this

parameter remains small which means, that there is no

significant influence of the flow conditions on mass

transfer as long as no additional disturbances like

Marangoni convection occur.

For the variation of Pe an upper limit exists only for

the internal problem. In that case, for Pe P 104 the con-

centration along each streamline is constant and mass

transfer perpendicular to the streamlines and to the

interface is only diffusive. Below Pe = 10 the problem

is diffusion limited.

In general, for cases which are approximately inter-

nal problems the parameter range which influences the

mass transfer rate is smaller than in the other cases

and therefore, usually the precision of a priori guesses

will be better.

Even if the conjugate problem cannot be described by

defining the total mass transfer resistance as a sum of the
resistances of the internal and the external problem,

qualitatively the influence of a parameter can be gained

from its influence on the internal and on the external

problem. For low Pe the external problem is rate deter-

mining and the for large Pe the internal problem.
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Appendix A. Dimensionless equations

For easier understanding the governing equations are

given in dimensionless form here. Some additional defi-

nitions will be provided at the beginning to define all

quantities properly. Slight modifications are required

for the internal and the external problem where one of

the diffusion coefficients is infinitely large and only one

mass transfer equation is used. In the figures the results

are presented in relation to the Fourier number instead

of the dimensionless time defined below as most discus-

sions on this topic use this form [1,4,9].

Definitions:

t0 ¼ t j~vr j
d

¼ Fo
Pe
4

~v0 ¼ ~v
j~vr j

r0 ¼ 2r
d

p0 ¼ p

q1 j~vrj
2

n01 ¼
ðc1 � mc21Þ
ðc10 � mc21Þ

n02 ¼
ðc2 � c21Þ

ðc10=m� c21Þ
r0 ¼ rd

l� ¼ l1

l2

Re ¼ d j~vr j q2

l2

q� ¼ q1

q2

Pe ¼ d j~vr j
D1

D� ¼ D1

D2

Fr ¼ j~vrj2

d j~g j

ðA:1Þ

Disperse phase:

0 ¼ r0 �~v0

o~v0

ot0
¼ 0 ¼ �ð~v0 � r0Þ~v0 þ l�

Req� ðD
0~v0Þ � r0p0 þ 1

Fr

on01
ot0

¼ �~v0 � r0n01 þ
1

Pe
r0 � ðr0n01Þ

ðA:2Þ

Continuous phase:

0 ¼ r0 �~v0

o~v0

ot0
¼ 0 ¼ �ð~v0 � r0Þ~v0 þ 1

Re
ðD0~v0Þ � q�r0p0 þ 1

Fr
on02
ot0

¼ �~v0 � r0n02 þ
1

PeD� r0 � ðr0n02Þ

ðA:3Þ
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Conditions at the interface:

v0r1 ¼ v0r2 ¼ 0

v0H1 ¼ v0H2

l� ov0H
or0

� v0H
r0

�� ����
1

¼ ov0H
or0

� v0H
r0

�� ����
2

n01
n02

¼ 1

D� on
0
1

or0
¼ on02

or0

ðA:4Þ
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port zwischen einer Einzelkugel und einer ruhenden

Umgebung, Chem. Ing. Tech. 44 (1972) 313–319.

[16] M. Qi, H. Haverland, A. Vogelpohl, Auslegung von

pulsierenden Siebboden- und Sprühkolonnen für die

Extraktion auf der Basis von Einzeltropfenuntersuchun-

gen, Chem. Ing. Tech. 72 (3) (2000) 203–314.

[17] A.R. Uribe-Ramirez, W.J. Korchinsky, Fundamental the-

ory for prediction of single-component mass transfer in

liquid drops at intermediate Reynolds numbers, Chem.

Eng. Sci. 55 (2000) 3305–3318.


	Sensitivity study for the mass transfer at a single droplet
	Introduction
	Model description
	Velocity field
	Concentration field

	Numerical setup
	Results
	Influence of fluid dynamics
	Influence of mass transfer

	Conclusions
	Acknowledgement
	Dimensionless equations
	References


